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Riemann solutions in magnetohydrodynamics were first analyzed in [l-3]. 

There has as yet been no success in finding a similar solution for a 

two-component quasi-neutral plasma. 

There are a number of investigations 14.51 of the nonlinear oscilla- 

tions in a plasma across an external magnetic field, in which the de- 

pendence of all the quantities on the variable { = L - vt is assumed, 

where v is the constant wave propagation velocity. Such investigations 

were carried out in 16-81 f or waves being propagated in a plasma along 

a magnetic field fle. It was shown in rf3.71 that a solitary compression 

wave moving at the velocity 

exists in a cold plasma. 

Here me, mi are the electron and ion mass, respectively; nr the 

plasma density at the point < = 0 and no at infinity (< = * UJ ). More- 

over. the following quasi-neutrality conditions were obtained [‘I! for a 

cold plasma:v2 << (rpe/m;)c*. 

Certain questions associated with the propagation of a solitary wave 

along a magnetic field in a two-component. quasi-neutral plasma in which 

binary collisions are lacking are examined below; the existence of 

magnetosonic solitary waves is investigated. In the case of a cold plasma 

it is found that the positive charge in a solitary compression wave is 

held around the maximum of the plasma density and the plaama is charged 
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positively in this region but is negative at a distance from the maximum. 
For weak waves the value of the half-width and velocity of the waves as 
well as the quasi-neutrality condition for a hot plasma are obtained. 
Moreover, it is shown that the profile of a magnetosonic wave is de- 
formed during its motion. 

1. Fundamental equations. Let us assume that the wave moves 
along the t-axis along which the magnetic field &, is directed. 'Ihe re- 

spective motion equations for ions and electrons moving with velocity 

vi, ye and with density ni, ne are 

M$Zi (V - Ui) ‘2 = grad pi - t%i 
vi x H1 

E + CJ 

men, (v - 
dve 

G) x = grad p, -I- ene 
ve x H 

E + 7 3 
(1‘1) 

(1.2) 

!Iere ui and ue are the ion and electron velocities along the r-axis; 

p.; and p, the partial pressures of the ion and electron gas, respec- 

tively; E and Ef the electric and magnetic field intensities, respec- 
tively; e the magnitude of the charge on the electron (ion); c the velo- 
city of light. 

Let us take the continuity equation in the form 

g f?Zi (V - Ui)] = 0, 2 1% (v - &)] = 0 (1.3) 

and the Maxwell equation as 

rokH=_$j, rol E=$, div H = c) 

div E I= 4ze (ni - n,) 

(j = e(nivi - neVc) - current in the plasma) 

(1.4) 

(f-5) 

The plasma is assumed quasi-neutral, i.e. ne = ni = n. We neglect 

the difference (ni - ne) everywhere except in (1.5). This small differ- 

ence specifies the appearance of the electrostatic field EZ, which is 
the reason for the motion of the heavy positive ions. Moreover, equation 
(1.5) permits an estimate of the limits of the validity of the assump- 

tion on the quasi-neutrality of the plasma. 

Let us introduce the notation 
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Here H, and Hy are components of the magnetic field II along the I- 
and y-axes. The problem is steady-state in the < variables. Let us look 
for the solution for the solitary wave which is symnetric relative to 
c = 0. Hence, the boundary conditions will be: the velocities ve, vi, 
the field components Ex, Ey, E,, /I,, H and their derivatives with 
spect to < tend to zero at < = f 0~. Moreover, the magnitudes of the 

re- 

density and pressure of the electron and ion gas tend to the undisturbed 
value (i.e. at < = f m). 

Carrying out simple manipulations of (l.l), (1.4) and using (1.6), we 
can write the equalities 

(1.7) 

Here T, and Ti are the undisturbed temperatures for the electron ad 

ion gas, respectively; y the adiabatic exponent, which is considered to 
be the same for the electron and ion gas (y = 1, S/3, 2). 

According to (1.7), the function y can be selected as real. IIlis 
latter property was used in obtaining the second equation of (1.7). lhe 
variable h in the system of waves corresponds to the time in Lagrangean 
coordinates. Then, q~ real means that the frequency of precession of the 
magnetic field H around H,, is independent of the plasma temperature. 
‘Ihis latter is caused by the isotropy of the temperature. 

It is assumed below that the plasma is quilibrium, i.e. ?‘e = TL. 
Integrating (1.7), using the relation for y1’ mentioned in (1.7) here, 
we obtain 

(1.9) 

Here 

(,A2 (n’) - $5) ([f i- (f, (n’) I_ (n’))’ ‘1 t [(I -- I, (n’)i (I - I_ (n’))l”‘) 

(1 .I()) 
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f* (4 = 
(1 -j- n’j [(h’jwy - I] [ @2~)--~+~ - I] 

T (1 - 4 (-y - 1) (1 - n’) * 

It{--?----- 
(1 + n’) [(ll’)-y - I] 

L- 

(1 + n’) ((n’)--Y - 1) 2 ((q-Y+’ - 1) 
‘/a 

TV---n) ----=ny rti - (y--2){l--n’) )I 
(1.11) 

It is easy to establish the following properties of the function 
-T*(n’): 

I, (1) = I_ (1) = I. for n’ = 1, I+(n’)>l, r_(n’)<l for n’fl 

Ilee the equality sign for I+(n*) corresponds to the case y = 2, 
n’ > 1. and for f_Cn’) to the case y t 2, n’ < I. 

2. Ille solitary wave. To obtain the solution in the form of a 
solitary wave, the sign before the square root in (1.9) is selected in 
such a manner that: if the specific sign before the radical corresponds 
to a negative value of h, then the opposite sign would correspond to the 
positive value of h. Since the solution is sought as continuous every- 
where (up to the second derivatives inclusively), then the derivative 
must vanish at the point h = 0 (in this paper n’ f 0, n’ # m throughout) 

ff the v” = 0 case is 
dq.~/dh and dn’/dh vanish 
following value for the 
magnetosonic waves (n* ’ 

c&/&t = 0. (2.1) 

excluded from the analysis, then the derivatives 
simultaneously. Condition (2.1) yields the 
velocity of the rapid v+*(n*‘) and slow v_(n*‘) 

# 1): 

Here n 

a particu J 
* is the extremal value of n’. The expression for vk takes on 
arly simple form for y = 2, I = 1 

~2--g2_ 
fa2 ‘- 4) v II 2 

* _ -- -- 
h?, 

In the limiting cases 

(U‘J + 4) v 2 2’ 2 - j, 

+ - 2 (I $ n,‘j ’ 2T_9 = 0 for T vaT,=o (2.4) 

2TV02 
2?+2 = {y - I) fl - tr: ) f(n*ys‘l- I]$ P-2 3= 0 for Yii =o 

P.9 

Expanding the expression for v*‘(n’) in powers of (1 - n’) and retain- 

ing terms containing the coefficients 1, (1 - n’), (1 - n’)*, we obtain 
the results 
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ForI- .> (1 -nJ 

I> I, (n,‘) = 1 + [+ + ( T-g”,gI, (1 - n*!)] (1 - n,‘) + Qp {(r -+- 1) + 

+ [3 (7 + l)l','sgn (1 - n,‘)} (1 - n*‘)2 

we havr 

u 2 __ ca2 + 4, z'l12 
t- 4 

- I+ 
1 

19-2 = p"2 { I+ v (1 - n,‘) $- (qJ[(r + 2) -j &)I (1 - 

For (1 - I) >> 11 - R* q 

I<J(ni’) = 1 + [I---(‘;d)‘“sgn (1 -n,‘)](l -n,‘) + 

I 
+ (Q$J ((7 + 1) - 13 (7 + l)]%gn (1 - n,‘)} (1 - n*‘)2 

we have 

c2.c;) 

(2.3 

n*‘)O- 
I 
(2.8) 

(2.9) 

(2.10) 

u+* = p”* {I -t w (1 - n,‘) -I- v [(r + 2) - 2&I] (1 - nt1)2j 

v 2 _ (a2 + 4) “Y, \ 
_-- 4 

11 -t y + [+ f *,-j] (1 -- n*‘)2} (2.11) 

For the existence of a solitary wave describing the character of the 

field, determined by the change in the plasma density and the magnetic 

quantity 

I/,* -I- II,, 
11‘2 > - __ -.. :___ 

t(nn,, !Wi -I- me) tit 

simultaneous compliance is necessary with the following inequalities: 

$2 > 0, (d$ :! dh)2 > 0, (dn’ / dh)2 > 0 (2.12) 

If the first two inequalities of (2.12) are satisfied for dn’/dh = m 
at a point h # 0, then a solitary wave exists only for a change in the 

magnetic field. It follows from formulas (2.3) to (2.5), (2.7), (2.8), 

(2.10), (2.11) that a fast, solitary compression wave exists for I >> 1; 

a fast solitary rarefaction wave exists for I << 1 only for the magnetic 

field; no solitary wave exists for 1 = 1. 
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The boundary conditions and formula (1.3) lead to the equality 

zz = zzj = ZI, : ( 1 - n’) ?J (2.13) 

Lie obtain from (?.a), (2.5), (2.7), (2.10) and (2.13) 

(2.14) 

‘Ihe inequality ( 2.14) shows that tlLe profile of a magnetosonic wave 

is deformed during its motion. 

3. Distribution of particle charge and energy within a 
solitary wave. lJnder conditions of quasi-neutrality of the plasma, 

the electron and ion kinetic energy is determined, respectively, by the 

formulas (in the system of waves) 

J,$‘, = mi {” - (e2b* -- - _-I& [(ny--y+l _ I,) + q 
?. (3.1) 

1Vi = m, 
i 

(1 -(n’)?)$ 
2 _ & [(q--Y+1 _ 1 Ij ; miin’)2 (3.2) 

‘ILe ion kinetic energy increases as n’ increases and the electron 

energy decreases. This proves that the ion is held in the neighborhood 

of a peak of the solitary wave. 

domain 1 > n’ 

For a cold plasma (T, = Ti = 0) in the 

> J2/2, the ion kinetic energy is greater than the 

electron kinetic energy and, vice-versa in the domain 0 < n’ < J2/2. 

It is assumed below that the plasma is cold. The second formula of 

(1.7) and (1.9) lead to 

tary compression wave: 
the following form for the profile of the soli- 

[*;;]8’z - [(I - n,‘) (n’ - ~,~)I’,‘~} = _c Tj (3.3) 

where the plus and minus signs correspond to positive and negative q. 

In order to establish the charge distribution within a solitary wave, 

let us write the expression for the plasma char- (n, - ne) by using 

(1.5), (1.7) to (l.$) 
- & 

ni- n 
c = 

3 (mi2 - me2) 21~ (1 - n’) 

[ 

(1 1 zrr,‘) 

n0 -7 mimeC n 3 - 

A qualitative picture of the profile and the charge distribution 

n’ 
1 (3.4) 
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within a solitary wave is given on the figure. 
nates n3 and - n3 separate the positively from 
domains. 

The value q3 is determined by the equality 

rls = (_Li”[ __l (;)I: _ (* -?““‘“] (3.5) 

‘lbe coordinates n2 and - n2 correspond to 
inflection points of the curve of the soli- 
tary wave. ‘Ihe inequality n2 < n3 is satisfied 

Points with the coordi- 
the negatively charged 

for all n*‘. 

Integrating (3.4) in the domains (0, nf) and (nS, t ~0)~ we see that 
the obtained expressions are equal in magnitude but opposite in sign; 
this indicates the complete electrical neutrality of the plasma on the 
right branch of the solitary wave. ‘Ihe calculation for the left branch 
of the solitary wave is carried out analoewusly. 

4. Width of the solitary wave. Formulas (I..?), (1.9) yield an 
expression for dn’/&; expanding the latter in powers of (1 - n’) and 
retaining terms with coefficients (1 - n’), (1 - nr12, we find after 
integration of the obtained result 

Hence, the half-width of weak solitary waves and the magnitude of 
the amplitude depend on both the magnetic field fIO and on the tempera- 
ture of the plasma. 

5. Quasi-neutrality of the plasma. Using (1.51, (1.7) to (1.9) 
and retaining terms containing (1 - n’) and (1 - n’12 in the expression 
for (ni - ne) we obtain 

A necessary condition for quasi-neutrality 

j tli - n,. j < II,, 

(5.1) 

is 
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This leads to the inequalities 

(3.2) 
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